Fusion research facility's final tritium experiments yield new energy record


Fusion research facility's final tritium experiments yield new energy record



The Joint European Torus (JET), one of the world's largest and most powerful fusion machines, has demonstrated the ability to reliably generate fusion energy, while simultaneously setting a world record in energy output.

These notable accomplishments represent a significant milestone in the field of fusion science and engineering.

In JET's final deuterium-tritium experiments (DTE3), high fusion power was consistently produced for five seconds, resulting in a ground-breaking record of 69 megajoules using a mere 0.2 milligrams of fuel.

JET is a tokamak, a design which uses powerful magnetic fields to confine a plasma in the shape of a doughnut. Most approaches to creating commercial fusion favor the use of two hydrogen variants—deuterium and tritium. When deuterium and tritium fuse together they produce helium and vast amounts of energy, a reaction that will form the basis of future fusion powerplants.


Video inside the Joint European Torus tokamak of pulse #104522 from 3 October 2023, which set a new fusion energy record of 69 megajoules. Credit: United Kingdom Atomic Energy Authority, courtesy of EUROfusion

Dr. Fernanda Rimini, JET Senior Exploitation Manager, said, "We can reliably create fusion plasmas using the same fuel mixture to be used by commercial fusion energy powerplants, showcasing the advanced expertise developed over time."

Professor Ambrogio Fasoli, Program Manager (CEO) at EUROfusion, said, "Our successful demonstration of operational scenarios for future fusion machines like ITER and DEMO, validated by the new energy record, instill greater confidence in the development of fusion energy. Beyond setting a new record, we achieved things we've never done before and deepened our understanding of fusion physics."

Dr. Emmanuel Joffrin, EUROfusion Tokamak Exploitation Task Force Leader from CEA, said, "Not only did we demonstrate how to soften the intense heat flowing from the plasma to the exhaust, we also showed in JET how we can get the plasma edge into a stable state thus preventing bursts of energy reaching the wall. Both techniques are intended to protect the integrity of the walls of future machines. This is the first time that we've ever been able to test those scenarios in a deuterium-tritium environment."

Over 300 scientists and engineers from EUROfusion—a consortium of researchers across Europe, contributed to these landmark experiments at the UK Atomic Energy Authority (UKAEA) site in Oxford, showcasing the unparalleled dedication and effectiveness of the international team at JET.

Fusion research facility JET's final tritium experiments yield new energy record
Looking inside the Joint European Torus tokamak at pulse #104522 from 3 October 2023, which set a new fusion energy record of 69 megajoules. Credit: United Kingdom Atomic Energy Authority, courtesy of EUROfusion

The results solidify JET's pivotal role in advancing safe, low-carbon, and sustainable fusion energy.

UK Minister for Nuclear and Networks, Andrew Bowie, said, "JET's final fusion experiment is a fitting swansong after all the groundbreaking work that has gone into the project since 1983. We are closer to fusion energy than ever before thanks to the international team of scientists and engineers in Oxfordshire."

"The work doesn't stop here. Our Fusion Futures program has committed £650 million to invest in research and facilities, cementing the UK's position as a global fusion hub."

JET concluded its scientific operations at the end of December 2023.

Professor Sir Ian Chapman, UKAEA CEO, said, "JET has operated as close to powerplant conditions as is possible with today's facilities, and its legacy will be pervasive in all future powerplants. It has a critical role in bringing us closer to a safe and sustainable future."

JET's research findings have critical implications not only for ITER—a fusion research mega-project being built in the south of France—but also for the UK's STEP prototype powerplant, Europe's demonstration powerplant, DEMO, and other global fusion projects, pursuing a future of safe, low-carbon, and sustainable energy.

Post a Comment

0 Comments